
Part

I
Introducing HTML, XHTML, and CSS

1
C H A P T E R

WEB PAGE

DEVELOPMENT 101

f you can surf the Internet, operate a DVD player, or create a Microsoft

Word document, you too can create your own web pages. This chapter

introduces the HTML and XHTML markup languages, which web develop-

ers use to develop web pages, and CSS, which is used to provide styling information

that affects the appearance and presentation of web pages. You will also be intro-

duced to the DOM (document object model), which organizes web page contents

into a hierarchy allowing it to be easily referenced, and to JavaScript, which is a

scripting language used to create dynamic web pages that interact with visitors.

You will also learn how links are used to connect things together and will end by

learning how to create your very first web page.

Specifically, you will learn:

• About the differences between HTML and XHTML markup languages

• About the role of CSS in influencing web page presentation

• About JavaScript and its role in creating interactive websites

• How links are used to tie together the pages of your website and to connect

them to outside world

I

PROJECT PREVIEW: THE HTML JOKE PAGE
In this chapter and in each chapter that follows, you will learn how to create a new web

project. Learning web development though hands-on exercises and instruction makes

learning a lot of fun. This chapter’s project is the HTML Joke Page. The web page displays a

joke and its punch line when displayed, as shown in Figure 1.1.

FIGURE 1.1

Displaying the
HTML Joke Page

using Internet
Explorer 8.

As you can see, there is not a lot to this web page, just some text that displays the joke and

its punch line. Still, by learning how to create this simple web page, you will learn the basic

steps involved in creating all kinds of web pages.

Properly designed web pages should display in a consistent fashion regardless of which web

browser they display in. Figures 1.2 and 1.3 show how this same web page looks when dis-

played using different web browsers.

HTML, XHTML, and CSS for the Absolute Beginner4

FIGURE 1.2

Displaying the
HTML Joke Page

using Mozilla
Firefox 3.

FIGURE 1.3

Displaying the
HTML Joke Page

using Apple
Safari 3.

INTRODUCING HTML, XHTML, CSS, AND OTHER WEB
DEVELOPMENT TECHNOLOGIES
The development of web pages and websites involves a number of different programming

languages that together allow web developers to create unique, interesting, and interactive

web pages. These languages include:

Chapter 1 • Web Page Development 101 5

• HTML

• XHTML

• CSS

• JavaScript

Each of these languages is introduced and discussed in this chapter and then reviewed in

detail in later chapters. These languages have been around for years and are supported by

recognized industry standards. The complementary nature of these languages produces a

robust web development environment.

Many people use the terms web document and web page interchangeably. In this
book, a distinction is made between the two terms. The term web document is
used to refer to text files containing markup code and the term web page is used
to refer to the result that is displayed and made visible to web surfers when a
web document is loaded and rendered by a web browser or similar device.

HTML and XHTML
HTML and XHTML are markup languages. Markup languages are languages that “mark up”

plain text so it is formatted and displayed in a web browser in interesting and useful ways.

Web pages are rendered (displayed) by browsers when they load a copy of your web documents

(plain text files containing markup). Users load web documents by entering the web docu-

ment’s URL into the browser. As this book will demonstrate, most web pages are made up of

nothing more than plain text files consisting of HTML or XHTML (and perhaps a little CSS).

It All Started with HTML
HTML or Hypertext Markup Language is a markup language that was created based on SGML or

Standard Generalized Markup Language. First appearing in the early 1990s, HTML has long

served as the standard markup language for the Internet. XHTML, otherwise known as the

Extensible Hypertext Markup Language, is a markup language that is very similar to HTML, except

that it is based on XML rather than SGML. XML (Extensible Markup Language) represents a more

restrictive subset of SGML, resulting in tighter syntax that yields more consistent results when

markup is rendered by browsers.

HTML was created for the purpose of describing the structure of text-based web documents.

HTML suffers from a number of irregularities. XHTML was created to addresses these irregu-

larities. XHTML has a predictable syntax. Markup, be it HTML or XHTML, is the glue that binds

all of the content in your web documents together.

HINT

HTML, XHTML, and CSS for the Absolute Beginner6

Over the years, HTML has been enhanced a number of times. HTML 1.0 was pub-
lished in 1993. HTML 2.0 made its debut in 1995. HTML 3.0 appeared in 1996 and
HTML 4.0 was published in 1997. The most current version of HTML, HTML 4.01,
arrived on the scene in 1999. Even as new features have been added to HTML,
old features have also been deprecated. Deprecated features are marked for
eventual removal from the language. As such, their usage is highly discouraged.

Along Came XHTML
XHTML 1.0 arrived on the scene in 2000 and was originally intended to be the replacement

for HTML. XHTML is an update of HTML 4.01 that follows the more restrictive rules of XML.

XML is an extensible language that allows you to define your own elements. However, XHTML

version 1.0 does not support the definition of custom tags. Instead, you must stick with the

elements defined as part of the XHTML 1.0 specification.

The changes that were made to make the leap from HTML to XHTML were primarily small

ones. The primary purpose of the first version of XHTML was to adapt HTML to make it com-

pliant with XML. As a result, the two markup languages remain very similar and the way

things are done in one language is often identical to the way things are done in the other.

XHTML documents are required to be well formed. To conform to XML, all XHTML elements

must be written in lowercase and all elements must also be closed. HTML is a lot more lenient

in both of these circumstances, allowing upper- or lower-case spelling and open elements.

Unlike HTML, XHTML forces you to enclose all attribute values inside quotation marks (single

or double). Although HTML sometimes imposed this requirement, it often allows you to do

away with it.

The movement from HTML to XML results in a simplified and less complicated markup lan-

guage. It also means that the markup language has become compatible with all kinds of XML

tools, simplifying the presentation of content on resource-constrained devices like cellular

phones and other types of handheld devices.

Where We Are Now
HTML 4.01 was intended to be the final version of HTML. Despite XHTML’s many improve-

ments and wide adoption, many web developers continue to use HTML. Recognizing HTML’s

continued importance and the need for further improvements, W3C has resumed work on

the development of a new version of HTML, HTML 5.0. This will provide web developers who

support large amounts of HTML additional time to make the transition to XHTML. At the same

time the W3C is also working on the next version of XHTML, XHTML 5. New web developers,

however, should plan on working exclusively with XHTML. This will save the trouble of having

to convert down the road.

HINT

Chapter 1 • Web Page Development 101 7

Because HTML and XHTML are so closely related, what works in one language often works

identically in the other language. As a result, web developers have taken to referring to both

languages generically as (X)HTML. This text adopts this approach, using the term (X)HTML to

refer to both languages, except where specific differences between the two languages need

to be pointed out.

HTML and XHTML are sets of open standards maintained by the World Wide Web
Consortium (W3C). The W3C is a non-profit organization dedicated to the de-
velopment of open standards, ensuring that things on the Internet work
smoothly by providing everyone with a consistent and agreed upon set of rules.

Cascading Style Sheets
In the early days of web page development, web page developers were limited to the default

presentation capabilities built into HTML. However, HTML’s presentation capabilities were

very limited, forcing web developers to get creative. The result was often poor development

techniques in which HTML elements were used in ways that were never intended. To address

some of its presentation shortcomings, some of HTML’s elements were enhanced to provide

them with additional presentation capabilities. For example, numerous elements were given

new attributes that could be used to control their spacing, color, text size, etc.

Unfortunately, the inclusion of both structure and presentation into the same markup only

served to weaken both aspects. Of particular difficulty was the fact that embedding presen-

tation directly into markup made it difficult to modify the appearance and presentation of

a web page or website because altering the way things looked typically meant making changes

to elements throughout web documents. The end result was markup that was more difficult

to understand and update.

An answer to this challenge soon came along in the form of Cascading Style Sheet or CSS. CSS is

a style sheet language that web developers use to specify the presentation of web page content.

CSS is its own language with its own rules and syntax. CSS provides you with the ability to

separate markup from presentation through the creation of style sheets that specify how web

documents should be rendered when displayed.

CSS provides web developers with a means of applying a consistent look and feel to web pages.

CSS lets you specify things like font type, color, and size as well as background styles, borders,

and alignment. CSS alleviates the need for web developers to have to repeatedly configure

the presentation of elements within web documents. Instead, CSS lets you define style rules

once and then applies those rules to every matching page element.

HINT

HTML, XHTML, and CSS for the Absolute Beginner8

CSS made its debut back in 1997. However, it got off to a relatively slow start. It took years for

it to work its way into mainstream web development. Today, CSS is a widely adopted standard

sponsored and maintained by the W3C. By teaching you how to control the presentation of

your web pages using CSS, this book will help you to avoid making many of the mistakes that

web developers have traditionally made when building new web pages and sites.

You will get an early introduction to CSS in Chapter 3 followed by a more in-depth presenta-

tion of CSS in Chapters 7 and 8. By the time you are done, you will know how to develop web

documents whose content and presentation are kept separate, resulting in web documents

that are more streamlined and easy to maintain and update. As a result, you’ll be able to make

major or minor changes that affect the look and feel of entire websites through the modifi-

cation of CSS, without having to change your content and markup.

Getting Interactive with JavaScript
In order to create web pages that are truly dynamic and capable of doing more than simply

displaying static content, you need to learn how to work with a client-side programming

language. Many such languages are available. Of these, JavaScript is by far the most commonly

used. JavaScript programs are small text-based scripts that are downloaded as part of web

documents and then executed within web browsers.

A client-side programming language is one that executes within a browser on the
user’s computer as opposed to a server-side language, which executes on web
servers located on the internet.

JavaScripts give you, as a web developer, the ability to create truly interactive content. You

can write JavaScripts that respond to user activity such as mouse movements and key presses,

or to validate user input, such as ensuring that a phone number is formatted correctly.

JavaScript is an interpreted programming language. This means that scripts written in

JavaScript are not precompiled (made executable) at development time. Instead, scripts are

converted to an executable format only when downloaded into the web browser for execution.

Because it is an interpreted language, JavaScripts tend to execute a little slower than other

compiled programming languages. However, thanks to the speed of modern computers and

Internet connections, this impact is hardly noticeable.

JavaScript is also an object-based programming language. As such, it views everything within

an (X)HTML document and the browser as objects. One key feature of JavaScript that is essential

to the development of interactive web pages is the ability to trigger the execution of scripts

based on the occurrence of different types of events. An event is an action that occurs when

the user interacts with your web pages. As explained in Chapter 9, events occur for all sorts

HINT

Chapter 1 • Web Page Development 101 9

of reasons, such as when visitors first access a web page or when they leave it. Events also

occur when visitors click on form buttons, key input into text fields, and so on.

INTRODUCING THE DOCUMENT OBJECT MODEL
Web documents are made up of many different types of elements. As you will learn, web

browsers organize these elements using something called the document object model or DOM.

The DOM provides the ability for scripts and CSS to access and update the content and style

of web documents.

DOM Basics
The DOM is provided by the browser. The DOM provides a means through which JavaScripts

can access and interact with web document content. By programmatically manipulating DOM

objects, web developers can dynamically update web pages. Every time a browser loads a web

document, it renders an HTML page. At the same time, the browser creates a DOM tree map

in memory specifying all of the elements in the web document.

Back at the end of the 1990s, web browsers provided inconsistent support for
the DOM, often putting their own unique spin on things. As a result, web
browsers did not always display content the same way. In 1998, W3C published
the first DOM standard. In April 2004, DOM 3 was published. DOM 3 is still the
current standard. All modern web browsers support DOM 3. As a result, different
web browsers now render much more consistent results when displaying web
pages.

Within the DOM, objects are organized in a hierarchy. At the top of this hierarchy is the

document object. The document object ties together all of the elements in the document into a

tree-like structure. Every element defined in a web document is represented by its own

object in the DOM. The result is a collection of related objects with parent, child, and sibling

relationships. Using a scripting language like JavaScript, you can use these relationships as a

means of navigating the DOM tree. Further, you can use methods and properties provided by

these objects to interact with and control them, allowing you to do things like make ele-

ments appear and disappear. You can also use CSS and the DOM to modify web documents

by changing things like their color, size, and so on.

Navigating the DOM Tree
As already noted, the document object sits at the top of the DOM tree as depicted in Figure 1.4.

The document object provides programmatic access to all of the objects that make up a web

document.

NOTE

HTML, XHTML, and CSS for the Absolute Beginner10

FIGURE 1.4

The document
object provides

easy access to all
of the elements
located on a web

document.

The document object resides at the top of the tree. Underneath it are all of the other objects

that make up the web document. As an example of how web documents are mapped out by

the DOM, take a look at the following web document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <title>DOM Example</title>

 </head>

 <body>

 <h1>The Three Bears</h1>

 <p>Once upon a time there were three bears.</p>

 </body>

</html>

This small XHTML page contains a title element, a level 1 heading (h1), and a paragraph (p)

element. Figure 1.5 shows the web page that is displayed when this web document is loaded

and rendered by Internet Explorer.

Chapter 1 • Web Page Development 101 11

FIGURE 1.5

An example of the
web document

once it has been
rendered by

Internet Explorer.

The browser’s internal view of the web document’s content is quite different from what the

web surfers see. Figure 1.6 provides a graphical representation of the DOM tree that the

browser will create in memory when it loads the web document.

FIGURE 1.6

A graphic
representation of
the DOM tree that

the browser will
produce in

memory as it
renders the web

document.

As you will learn later in this book, you can assign an optional id attribute to the
elements that make up your web documents. You can then use each element’s
assigned id to programmatically interact with the element or to alter its pre-
sentation by applying one or more CSS rules to it. To learn more about the DOM,
visit www.w3c.org/DOM.

NOTE

HTML, XHTML, and CSS for the Absolute Beginner12

www.w3c.org/DOM

UNDERSTANDING HOW THINGS GET DONE ON THE
WORLD WIDE WEB
People use many different types of devices to connect to the Internet. Most people surf the

Internet using their computer and a web browser like Microsoft Internet Explorer. A web

browser is a software application that processes HTML and XHTML documents and renders web

pages based on the contents of those documents. The following list identifies a number of

today’s most commonly used web browsers.

• IInternet Explorer. Windows browser (www.microsoft.com/windows/Internet-

explorer/).

• SSafari. Mac OS X browser (www.apple.com/safari/).

• FFirefox. Windows, Mac OS X, and Linux browser (www.firefox.com).

• OOpera. Windows, Mac OS X, and Linux browser (www.opera.com).

• DDeepnet Explorer. Windows browser (www.deepnetexplorer.com).

• KKonqueror. Linux browser (www.konqueror.org).

• CCamino. Mac OX S browser (caminobrowser.org).

• GGoogle Chrome. Windows browser (www.google.com/chrome).

Despite all of the standardization that has occurred in recent years with HTML,
XHTML, CSS, and JavaScript, there are still small differences in the way that
browsers render content. As a result, it is important that you test your web pages
using at least two or three of the browsers listed above.

There are, however, many other ways that people connect to the Internet, including things

like Internet-enabled cell phones, specialized text-to-speech devices that assist visually chal-

lenged people who surf the Internet. Regardless of which software program or device people

are using, they all have one thing in common: they are designed to process (X)HTML docu-

ments and to render web pages based on the content provided in those documents.

Some of the people that visit your website may not use any of the above
browsers. These users might have visual problems and surf the Internet using
special text-to-voice applications or they may use browsers like Lynx. Shown in
Figure 1.7, Lynx only supports text-based browsing. Text-only browsing allows
for really fast browsing.

HINT

HINT

Chapter 1 • Web Page Development 101 13

www.microsoft.com/windows/Internet-explorer/
www.microsoft.com/windows/Internet-explorer/
www.apple.com/safari/
www.google.com/chrome
www.firefox.com
www.opera.com
www.deepnetexplorer.com
www.konqueror.org

FIGURE 1.7

Using the Lynx
browser to visit
www.google.com.

Most websites depend heavily on the use of graphics to help deliver their mes-
sage. This can create a range of challenges for web developers. Fortunately, as
you will learn in Chapter 5, there are ways of providing content specifically de-
signed to service the needs of these types of users.

LINKING EVERYTHING TOGETHER
In order to access anything on the Internet, you must know its URL or Uniform Resource Loca-

tor. For example, to access Microsoft’s website you would enter a URL of www.microsoft.com

in your browser’s URL field and press Enter. Every website has one. In fact, every page of every

website has a URL as well. URLs are defined using the syntax shown in Figure 1.8.

FIGURE 1.8

A URL is made up
of multiple

components that
together identify
the location of a
resource on the

web.

As you can see in Figure 1.8, every URL consists of the following components.

• PProtocol. A set of rules that governs communications and the exchange of data between

computers over a network. You will specify http (HyperText Transfer Protocol), which is a

protocol that governs the transmission of hypertext-encoded data between computers

on a network.

• DDomain Name. Identifies the website where the specified web page or resources resides.

HTML, XHTML, and CSS for the Absolute Beginner14

www.google.com
www.microsoft.com

• PPath. A hierarchical list of folders in which a web page of file resides.

• FFilename. The name of the file to be retrieved and loaded.

• EExtension. The file’s file extension, typically .htm or .html.

URLs begin by specifying the http protocol, which is separated from the remaining text in the

URL by the :// characters. Domain Name specifies the name of the website where the web page

or file resides. Just like your computer, web servers can store files in a hierarchical collection

of folders. Path specifies the folder in which the document is stored. The / character is used

to separate the domain name from the path. The / character is also used to delineate every

folder specified in the path. The path is followed by another / and then the name of the file

to be retrieved, followed by a dot and the file’s file extension, which in the case of web pages

is either .htm or .html. Specifying the correct extension is important, since a website may

have files that share the same name but different file extensions.

You may use either .htm or .html as the file extension of your web pages. The
three-character .htm file extension dates back to the days of MS-DOS when
all files had to have three character file extensions. You may use either file ex-
tension you want. Throughout this book the more familiar .html extension will
be used.

URLs are essential to the operation of the web. They provide an easy, intuitive way of speci-

fying where things reside. URLs are also used in the construction of links, providing the

foundation for navigation between web pages. Path information in URLs can be specified

using either absolute or relative values, both of which are discussed in the sections that

follow.

Working with Absolute Paths
An absolute URL is one that specifies a text string that contains a fully qualified path that

identifies the exact location of a resource on the Internet. An absolute URL specifies the pro-

tocol, domain name, complete path showing all folders as well as a filename and extension.

Absolute URLs are used when creating links to external web pages that exist outside of your

website. For example, the following string is an example of a typical absolute URL.

http://www.apple.com/education/it-professionals/index.html

Here, an absolute path of /education/it-professionals/ shows the exact location within which

the index.html web page resides at the www.apple.com domain.

HINT

Chapter 1 • Web Page Development 101 15

http://www.apple.com/education/it-professionals/index.html
www.apple.com

Most web servers are configured to automatically load a default web page when
a URL specifies a folder instead of a filename. More often than not, the default
web page is named index.html. So, if you wanted, you could rewrite the previous
URL as shown below and the web server will serve up the same web page.

http://www.apple.com/education/it-professionals/

Relative Paths
A relative URL is one that specifies the location of a file relative to the location of the current

web page. A relative URL allows you to point to a file location by specifying only its path and

file information. Relative URLs allow you to shorten paths. For example, if you need to create

a link to a file that resides in the same folder as the web page, all you have to do is specify the

filename and extension of the other file as demonstrated here:

help.html

Another advantage of working with relative URLs is that they can make the
movement of websites from one server to another a lot easier. All you would
have to do is copy all of the files that make up your website from one web server
to another and as long as you used relative URLs to connect your web pages,
everything should still work. No changes required.

If on the other hand, you need to refer to a file that resides in a parent folder, then use a

relative URL, type ../ followed by the name of the file.

../help.html

If the file being referenced is, say, three folders up in the folder hierarchy, you do as demon-

strated here:

../../../help.html

If it’s easier, you can specify the location of a file starting from the location of the website’s

root or top-most folder. Just enter a / followed by the path to the folder where the file resides,

as demonstrated here:

/projects/helpfiles/help.html

When a string indicating a path begins with the / character, that opening / char-
acter always represents the root folder.

HINT

TRICK

HINT

HTML, XHTML, and CSS for the Absolute Beginner16

http://www.apple.com/education/it-professionals/

WORKING WITH AN (X)HTML EDITOR
The development of web documents differs from the development of other documents like

word publishing and spreadsheets in one key way: to create and view the results of a web

document in its final rendered form, you must work with two different applications. First,

you must have a text or code editor with which you can create the text file that makes up

your (X)HTML document. Once you have created and edited your web document, you must

then use a web browser to view the resulting web page.

If after reviewing your work you decide to make additional changes, all you have to do is re-

edit the text of the document’s file and save it. Once complete, you can click on the web

browser’s refresh button to update the display of the resulting web page. In no time at all,

you will quickly master the process and find the transition between editor and browser to be

second nature.

There are plenty of high-end web editors available. Some of these editors include
features like color-coding, automatic indentation, as well as access to prewritten
code snippets. Some editors even come with built-in browsers of their own,
saving you the hassle of having to work with two separate applications. I recom-
mend that you stick with your computer’s default text editor for now. This keeps
things simple and allows you to focus on the fundamentals of web page devel-
opment. Once you have mastered this, you can always upgrade to a higher-end
editor and take advantage of all its bells and whistles.

CREATING A SIMPLE WEB PAGE
This chapter has used the term document frequently to refer to plain text files containing (X)

HTML statements. Documents, when rendered by web browsers, are used as the basis for

creating web pages, made up of the content outlined in documents. All XHTML Strict 1.0

documents share a common format that must be strictly adhered to. This format consists of

the DOCTYPE element, which is followed by the html element and its contents.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 </head>

 <body>

HINT

Chapter 1 • Web Page Development 101 17

 </body>

</html>

Note the extra use of blank spaces and lines in the previous example. Their usage
has no effect on the resulting document other than to improve its readability for
the developer. When rendered by a web browser, this extra white space is ig-
nored. Also note the use of indentation for some of the document’s elements,
which is used strictly for the purpose of visually formatting and organizing the
hierarchical relationship of elements to one another.

Lastly, note that the DOCTYPE element, located at the beginning of the document,
though written on two lines, is actually a single statement. It was spread out over
two lines to improve its presentation within this book. To show that the second
part of the statement is related to the first part, the second part was indented
two spaces.

The html element serves as the document’s root element and acts as a container in which all

other elements are stored. Specifically, the html element contains the head and body elements.

The head element contains other elements that are used to provide information about the

document and its contents. The body element contains all of the document’s contents, which

when rendered by the web browser is presented as web page content. Every XHTML document

that you create will follow this same format, varying only if you decide to work with a different

version of XHTML.

Aside from the DOCTYPE element, every element in an (X)HTML document must
be placed inside the opening <html> and closing </html> tags that make up the
html element. Otherwise, the document is regarded as invalid resulting in un-
predictable results.

If, however, you decide to work with HTML documents, both the DOCTYPE and opening html

element will vary slightly, as demonstrated here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 </head>

HINT

TRAP

HTML, XHTML, and CSS for the Absolute Beginner18

 <body>

 </body>

</html>

In this example, a document adhering to HTML 4.01 version strict has been laid out.

BACK TO THE HTML JOKE PAGE
It is now time to turn your attention to the development of this chapter's project, the HTML

Joke page. When loaded into the web browser, this document, named HTMLJoke.html, will

present visitors with a web page that displays the text for a humorous joke along with the

text for that joke’s punch line.

Since this book has yet to introduce you to the intricacies of (X)HTML development, don’t

worry if you do not fully understand what each individual statement is doing. For now, keep

your attention on the overall process being followed. Things will become clear as you make

your way through this book. By the time you have finished this book, web pages like the HTML

Joke page will seem quite elementary to you.

Designing the Application
To help keep things simple, the development of this application will be performed in three

steps, as outlined here:

1. Create a new HTML document.

2. Develop the document’s markup.

3. Load and test the HTML page.

Although this web project is relatively simple, its development will walk you through the

basics steps involved in creating and testing most web pages. As long as you take your time

and follow along carefully with all of the instructions that are provided, you should not have

any trouble creating and then testing your own copy of this web document.

In order to be able to share your web pages with the world, you will have to find
a web host. Advice on how to find a web host is provided in Chapter 2. For now,
you will learn how to test the execution of your web pages, locally on your own
computer.

HINT

Chapter 1 • Web Page Development 101 19

Step 1: Creating a New HTML Document
The first step in the creation of this project is the creation of an empty text file. Begin by

opening your preferred code or text editor; Microsoft Notepad will work just fine on Windows

and TextEdit will do on Mac OS X. Of course, you can use any editor that can save its

output as a text file. Create and save a new, empty text file. Name the file HTMLJokes.html

and save it.

To keep things simple and make your web pages easy to access and maintain,
consider creating a dedicated folder to store them in. For example, when devel-
oping the web documents for this book, a folder named HTML_Source was
created on the computer’s local C: drive. You’ll see that reflected in the URL field
of a number of the figures shown in this and other chapters.

Step 2: Developing the Document’s Markup
The next step in creating the HTML Joke project is to develop the web document’s markup.

Begin by adding the following elements to the HTMLJokes.html document.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 </head>

 <body>

 </body>

</html>

These statements are identical to those for the HTML template that you were introduced to

earlier in this chapter. These elements including the DOCTYPE element, which specifies the

version of HTML being used, and the elements needed to outline the document’s html, head,

and body sections. At this point you have supplied everything needed to create a valid, well-

formed HTML page. If you were to save and load this document into your browser you would

see a blank web page. Of course, to create a web page of value, you must add content to it. In

the case of the HTML Joke project, this includes the addition of both head and body elements.

HINT

HTML, XHTML, and CSS for the Absolute Beginner20

Modifying the head Section
To complete the document’s head section, modify it by embedding the meta and title elements

as shown here:

<head>

 <meta http-equiv="Content-type" content="text/html; charset=UTF-8">

 <title>Chapter 1 - HTML Joke</title>

</head>

The meta element shown here is used to specify the content type and character set used by

the document. The title element is used to specify a text string that will be displayed in the

web browser’s titlebar. You will learn more about how to work with both of these elements

in Chapter 3.

Specifying Document Content
The web page’s content is provided by the document’s body section. It consists of a level 1

heading and two paragraphs that display a joke and the joke’s accompanying headline. To

update the document’s body section with the elements required to tell the joke, modify the

document’s body section as shown here:

<body>

 <h1>HTML Joke</h1>

 <p>Why is the number 6 afraid of the number 7?</p>

 <p>Because 7 ate 9.</p>

</body>

Without getting into the specifics now, the h1 element displays a heading identifying the

joke. Then two p elements are used to display the requisite text content.

The Finished HTML Document
Once you have modified the document’s body section, your copy of the web document is

complete. The following example shows what the document looks like once it has been com-

pletely assembled.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 <meta http-equiv="Content-type" content="text/html; charset=UTF-8">

Chapter 1 • Web Page Development 101 21

 <title>Chapter 1 - HTML Joke</title>

 </head>

 <body>

 <h1>HTML Joke</h1>

 <p>Why is the number 6 afraid of the number 7?</p>

 <p>Because 7 ate 9.</p>

 </body>

</html>

Although this book’s primary focus is on the use of XHTML, its first project was
done using HTML to demonstrate the similarities of the two markup languages.
To convert this HTML document to an XHTML document, all you have to do is to
modify the document’s DOCTYPE and html elements as shown here in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 1 - XHTML Joke</title>

 </head>

 <body>

 <h1>XHTML Joke</h1>

 <p>Why is the number 6 afraid of the number 7?</p>

 <p>Because 7 ate 9.</p>

 </body>

</html>

Step 3: Loading and Testing the Web Page
As you are about to see, you can easily load and display your web document from your own

computer using your web browser, without having to upload it to the Internet. This makes

testing your document quick and easy. To do so, open your preferred web browser and then

execute the following procedure.

HINT

HTML, XHTML, and CSS for the Absolute Beginner22

1. Click on the browser’s File menu and select the Open File command. This displays a

standard file open dialog.

2. Using the dialog window, navigate to the folder where you stored the web page and

select it.

3. Click on the Open button. The browser will then load and display the document, as

demonstrated in Figure 1.9.

FIGURE 1.9

An example of
how the HTML

Joke page looks
when loaded using

the Opera Web
browser.

You can also load and test the HTMLJokes.html file by opening the folder in
which you stored it and then double-clicking on it.

Well, that’s it. As you can see, the steps required to create a basic web page are very straight-

forward. More complex web projects, involving multiple web pages and internal and external

CSS and JavaScript files, require additional files and their development is a little more com-

plicated, as you will see in later chapters.

SUMMARY
This chapter provided an introduction to HTML and XHTML, the markup languages used to

develop web documents, and to Cascading Style Sheets or CSS, a web development language

used to affect the appearance and presentation of web pages. You were also introduced to the

document object model or DOM. Using the DOM, web developers are able to programmatically

TRICK

Chapter 1 • Web Page Development 101 23

interact with and further control the presentation of web pages. You also learned how links

are used to tie things together on and between web documents. On top of all this, you learned

how to create your first HMTL and XHTML documents.

Challenges

1. As currently written, the HTML Joke document displays a web

page with a single joke shown on it as well as the joke’s punch

line. To make the page more interesting, consider adding

additional jokes to the web document.

2. Try modifying the document title by changing the contents of

its title element, as shown here, to a test string of your own

choosing.

<title>Chapter 1 - HTML Joke</title>

3. Replicate these changes in the XHTML version of this web page.

HTML, XHTML, and CSS for the Absolute Beginner24

